<u>1. Introduction</u>

HGF-3000 Thermal Gas Mass Flow Meter is an instrument which measures fluid flow by means of heat conduction. The constant temperature differential method is adopted for this instrument to measure the gas mass flow accurately, featured by small volume, high degree of digitalization, convenient installation and accurate measurement.

The sensor element of HGF-3000 is made up of two platinum resistance temperature sensors of reference level. Bridge circuit is adopted in the instrument for flow measurement under high temperature and pressure. One sensor is applied in measuring the fluid temperature, and another is to maintain the constant temperature differential of that over fluid temperature.

HGF-3000 Thermal Gas Mass Flow Meter has the following technological superiorities:

- a true mass flow meter which could measure the gas flow conveniently and accurately without compensation for temperature or pressure. Mass flow or standard volume flow of the gas is to be obtained.
- Great range ratio; It could measure the flow rate from 100Nm/s maximum to 0.5Nm/s minimum, and is served for gas leak detection.
- Good anti-vibration performance and long service life; There are no moving or pressure-sensitive parts in the sensor, which keeps the measurement accuracy away from the effect of vibration.
- Simple and convenient installation and maintenance: Non-stop installation and maintenance could be carried out in case of suitable field conditions.
- Digitalization design; Digital circuit measurement is applied throughout the instrument, featured by accurate detection and convenient maintenance.

Technical Parameters									
	Insertion type	Segment type							
Measuring media	Various gases (except for acetylene gas)								
Range of pipe diameter	DN80-6000 mm	DN15-2000 mm							
Velocity range		0.5-100 Nm/s							
Accuracy	±1.0%								
Working temperature	Sensor: normal temperature type -10°C to +200°C, high temperature type -10°C to +350°C; converter:-20°C to +45°C (for special environment, please specify)								
Working pressure	Media pressure≤2.5Mpa	Media pressure≤4.0Mpa							
Power supply	Integrated type machine (DC24V or AC220V \leq 18W), detachable converter (AC220V \leq 19W)								
Response speed	18								
Output signal	4-20mA (photoelectric isolation, maximum load 500Ω) RS-485 (photoelectric isolation)								
Pipeline material	Carbon steel, stainless steel and plastic, etc.								
Display	Integrated type: 8-bit field + 24 prompts Detachable type: 10x2 Chinese characters								
Display content	Mass flow, volume flow under normal condition, integrated flow, standard time and integrated runtime, etc.								
Outline of detachable converter	Wall-hanging type: 213x185x107mm Panel-mounting type: 160x80x160mm								
Distance between detachable converter and primary instrument	≤25m(primary instrument is powered by detachable converter), ≤1000m (primary instrument is powered on the site)								
Degree of protection of detachable converter	Wall-hanging type: IP65 Panel-mounting type: IP52								
Degree of protection of primary instrument	IP67								
Explosive-proof grade of primary instrument	Exd II CT4								
Sensor materials	Stainless steels Stainless steel, carbon steels								

2. Technical Parameters and Functions

- 5 -

3. Installation and Connection

- Install sun shades for outdoor instrument to keep out of sunshine and rain.
- Installing in the place with strong vibration is prohibited.
- Exposing in the environment with great amount of corrosive gases is prohibited.

◎ Don't share one power source with equipments that will pollute the power source such as frequency converter, welding machine etc. Install purified power for converter if necessary.

3.1 Integrated type installation and connection

3.1.1 Appearance and Structure

Applies to pipes with diameter more than DN80mm

① The integrated and insertion type should insert into the axle center of measured pipe, therefore, the length of measuring rod depends on the diameter of measured pipe. Please specify clearly in your order. If the instrument can't insert into the axle center of measured pipe, the manufacturer will provide standard factor for accurate measuring.

(2) The one-piece and segment type adopts flange connection and conforms to national standard GB/T9119 – 2000. See Appendix 2.

Applies to pipes with diameter more than DN15mm

Name	Molecular formula	Molecular weight	Density pn/ (kg/m ³) 20°C 101.325 kPa	Specific heat ratio Zn 20°C 101.325k Pa	Name	Molecular formula	Molecular weight	Density ρn/(kg/m ³) 20°C 101.325 kPa	Specific heat ratio Zn 20℃ 101.325k Pa
Air(dry)		28.9626	1.2041	1.4 ⁽¹⁾	Acetylene	C_2H_2	26.038	1.083	1.24
Azote	N_2	28.0135	1.1646	1.4 ^①	Benzene	C_6H_6	78.114	3.2476	1.101
Oxygen	O ₂	31.9988	1.3302	1.397 ^①	Carbon Monoxide	СО	28.0106	1.165	1.395
Helium	Не	4.0026	0.1664	1.66 ^①	Carbon dioxide	CO_2	44.00995	1.829	1.295
Hydrogen	H_2	2.0159	0.0838	1.412 ^①	Mononitrogen monoxide	NO	30.0061	1.2474	1.4
Krypton	K _r	83.80	3.4835	1.67	Nitrogen Dioxide	NO ₂	46.0055	1.9121	1.31
Xenon	X _e	131.30	5.4582	1.666	Nitrous Oxide	N ₂ O	44.0128	1.8302	1.274
Neon	Ne	20.183	0.83914	1.68	Sulfureted Hydrogen	$\mathrm{H}_2\mathrm{S}$	34.07994	1.4169	1.32
Argon	$\mathbf{A}_{\mathbf{r}}$	39.948	1.6605	1.68	Hydrocyanic Acid	HCN	27.0258	1.1235	1.31(65℃)
Methane	CH_4	16.043	0.6669	1.315 ^①	Carbon Oxysulfide	COS	60.0746	2.4973	
Ethane	C_2H_6	30.07	1.2500	1.18 ⁽¹⁾	Ozone	O ₃	47.9982	1.9952	
Propane	C_3H_8	44.097	1.8332	1.13 ^①	Sulfur Dioxide	SO_2	64.0628	2.726	1.25
Normal Butane	$C_4\mathrm{H}_{10}$	58.124	2.4163	1.10 ^①	Fluorin	F_2	37.9968	1.5798	1.358
Isobutane	$C_4 \mathrm{H}_{10}$	58.124	2.4163	1.11 ⁽¹⁾	Chlorin	CI ₂	70.906	2.9476	1.35
Normal pentane	C_5H_{12}	72.151	2.9994	1.07 ^①	Chloromethan e	CH ₃ CI	50.488	2.0990	1.28
Ethene	C_2H_4	28.054	1.1660	1.22 ^①	Anodynon	C ₂ H ₅ CI	64.515	2.6821	1.19(16°C (0.3~0.5)a tm)
Propylen e	C_3H_6	42.081	1.7495	1.15 ^①	Ammonia	NH_3	17.0306	0.7080	1.32
Butylene s -1	C_4H_8	56.108	2.3326	1.11 ^①	Freon -11	CCI ₃ F	137.3696	5.7110	1.135
Maleic Butylene s -2	C_4H_8	56.108	2.3327	1.1214 ^①	Freon -12	CCI_2F_2	120.914	5.0269	1.138
Fumaric Butylene s -2	C_4H_8	56.108	2.3327	1.1073 ^①	Freon -13	CCIF ₃	104.4594	4.3428	1.150(10 ℃)
Isobutene	C_4H_8	56.108	2.3327	1.1058 ^①	Freon -113	CCI ₂ FCCIF ₂	187.3765	7.7900	
(1) <u>15.6°C</u> ,	101.325kP	a						

Appendix4 Physical Parameters Sheet of Gases

- 23 -